Publications
For an automatically updating list of citable work, please of course see my Google Scholar (as I only periodically update my site). I do host PDF's here when possible, though! You can find a copy of my dissertation here. * Indicates equally contributing authors. † Indicates corresponding authors.
Preprints
- S. R. Kharel†, F. Meng, X. Qu, A Universal Deep Learning Framework for Materials X-ray Absorption Spectra. arXiv:2409.19552 (2024). † & D. Lu†.
- H. Kwon, T. Hsu, W. Sun, W. Jeong, F. Aydin, J. Chapman, X. Chen, Spectroscopy-Guided Discovery of Three-Dimensional Structures of Disordered Materials with Diffusion Models. arXiv:2312.05472 (2024). [Accepted: Machine Learning Science and Technology] , D. Lu, F. Zhou & T. A. Pham.
2025
- G. Ignacz, L. Bader, A. K. Beke, Y. Ghunaim, T. Shastry, H. Vovusha, Machine learning for the advancement of membrane science and technology: A critical review. Journal of Membrane Science 713, 123256 (2025). , B. Ghanem & G. Szekely†.
2024
- R. Dongol, A. Mukherjee, J. Bai, H. J. J. van Dam, In situ Synchrotron X‐ray Metrology Boosted by Automated Data Analysis for Real‐time Monitoring of Cathode Calcination. Small Methods 9, 2400181 (2024). , E. F. Abell, H. Zhong, A. Tayal, L. Ma, O. Kahvecioglu, K. Z. Pupek, D. Lu, K. Rajan† & F. Wang†.
- Y. Basdogan†, D. R. Pollard, T. Shastry, Machine Learning-Guided Discovery of Polymer Membranes for CO2 Separation. Journal of Membrane Science 712, 123169 (2024). , S. K. Kumar & Z.-G. Wang†.
- C. Cao*, Atomic Insights into the Oxidative Degradation Mechanisms of Sulfide Solid Electrolytes. Cell Reports Physical Science 5, 101909 (2024). *, C. Komurcuoglu, J. S. Shekhawat, K. Sun, H. Guo, S. Liu, K. Chen, S.-M. Bak, Y. Du, C. Weiland, X. Tong, D. Steingart, S. Yoo, N. Artrith, A. Urban†, D. Lu† & F. Wang†.
- Accurate, uncertainty-aware classification of molecular chemical motifs from multi-modal X-ray absorption spectroscopy. The Journal of Physical Chemistry A 128, 1948 (2024). †, P. M. Maffettone, X. Qu, S. Yoo & D. Lu†.
- T. Shastry†, Y. Basdogan, Z.-G. Wang, S. K. Kumar† & Machine learning-based discovery of molecular descriptors that control polymer gas permeation. The Journal of Membrane Science 697, 122563 (2024). †.
- S. Goswami†, K. Barros & Physically interpretable approximations of many-body spectral functions. Physical Review E 109, 015302 (2024). [PDF] .
- Flexible formulation of value for experiment interpretation and design. Matter 7, 685 (2024). [PDF] †, H. J. Kim, C. Fernando, S. Yoo, D. Olds, H. Joress, B. DeCost, B. Ravel, Y. Zhang† & P. M. Maffettone†.
2023
- The Generalized Green's function Cluster Expansion: A Python package for simulating polarons. The Journal of Open Source Software 8, 5115 (2023). [GitHub] †*, S. Fomichev*, A. J. Millis, M. Berciu, D. R. Reichman & J. Sous†.
- W. Chen*, Y. Ren*, A. Kagawa, Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-Threats. arXiv.2308.01921 (2023). [Accepted: ICLMA 2023] , S. Y.-C. Chen, X. Qu, S. Yoo, A. Clyde, A. Ramanathan, R. L. Stevens, H. J. J. van Dam & D. Lu.
- H. Kwon†, W. Sun, T. Hsu, W. Jeong, F. Aydin, S. Sharma, F. Meng, Harnessing Neural Networks for Elucidating X-ray Absorption Structure–Spectrum Relationships in Amorphous Carbon. The Journal of Physical Chemistry C 127, 16473 (2023). , X. Chen, D. Lu, L. F. Wan, M. H. Nielsen & T. A. Pham†.
- Lightshow: a Python package for generating computational x-ray absorption spectroscopy input files. The Journal of Open Source Software 8, 5182 (2023). [GitHub] †*, F. Meng†*, C. Vorwerk, B. Maurer, F. Peschel, X. Qu, E. Stavitski, C. Draxl, J. Vinson & D. Lu.
- H. Guo†*, Simulated sulfur K-edge X-ray absorption spectroscopy database of lithium thiophosphate solid electrolytes. Scientific Data 10, 349 (2023). †*, C. Cao, J. Qu, Y. Du, S. Bak, C. Weiland, F. Wang, S. Yoo, N. Artrith†, A. Urban† & D. Lu†.
- J. Lee, Machine-learning the spectral function of a hole in a quantum antiferromagnet. Physical Review B 107, 205132 (2023). [PDF] & W. Yin†.
- Z. Liang, Decoding Structure-Spectrum Relationships with Physically Organized Latent Spaces. Physical Review Materials 7, 053802 (2023). [PDF] , W. Chen, F. Meng, E. Stavitski, D. Lu†, M. S. Hybertsen† & X. Qu†.
- A. Ghose, M. Segal, F. Meng, Z. Liang, M. S. Hybertsen, X. Qu, E. Stavitski, S. Yoo, D. Lu† & Uncertainty-aware predictions of molecular X-ray absorption spectra using neural network ensembles. Physical Review Research 5, 013180 (2023). †.
2022
- P. M. Maffettone†, D. B. Allan, S. I. Campbell, Self-driving Multimodal Studies at User Facilities. arXiv:2301.09177 (2023). [Presented at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022)] , T. A. Caswell, B. L. DeCost, D. Gavrilov, M. D. Hanwell, H. Joress, J. Lynch, B. Ravel, S. B. Wilkins, J. Wlodek & D. Olds†.
- When not to use machine learning: A perspective on potential and limitations. MRS Bulletin 47, 968–974 (2022). †.
- Competition between Barrier- and Entropy-Driven Activation in Glasses. Physical Review E 106, 024603 (2022). [PDF] & M. Baity-Jesi†.
- S. B. Torrisi, J. M. Gregoire, J. Yano, Accelerated Materials Discovery: How to Use Artificial Intelligence to Speed Up Development / Chapter 3: Artificial intelligence for materials spectroscopy. Berlin, Boston: De Gruyter (2022). , C. P. Gomes, L. Hung & S. K. Suram.
2021
- C. Miles†, Machine learning of Kondo physics using variational autoencoders and symbolic regression. Physical Review B 104, 235111 (2021). [PDF] , E. J. Sturm, D. Lu, A. Weichselbaum, K. Barros & R. M. Konik.
- Bond Peierls polaron: Moderate mass enhancement and current carrying ground state. Physical Review B 104, L140307 (2021). [PDF] †, A. J. Millis†, D. R. Reichman† & J. Sous†.
- Numerically Exact Generalized Green’s Function Cluster Expansions for Electron-Phonon Problems. Physical Review B 104, 035106 (2021). [PDF] †, D. R. Reichman & J. Sous†.
- E. J. Sturm*, Computing Anderson Impurity Model Spectra Using Machine Learning. Physical Review B 103, 245118 (2021). [PDF] *, D. Lu, A. Weichselbaum & R. M. Konik†.
2020
- S. B. Torrisi†, Random Forest Machine Learning Models for Interpretable X-Ray Absorption Near-Edge Structure Spectrum-Property Relationships. npj Computational Materials 6, 109 (2020). , B. A. Rohr, J. H. Montoya, Y. Ha, J. Yano, S. K. Suram† & L. Hung†.
- Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides. The Journal of Chemical Physics 152, 194705 (2020). [PDF] †, M. Z. Mayers & D. R. Reichman.
- Effective Trap-like Activated Dynamics in a Continuous Landscape. Physical Review E 101, 052304 (2020). [PDF] †, V. Astuti & M. Baity-Jesi.
- Machine-learning X-ray absorption spectra to quantitative accuracy. Physical Review Letters 124, 156401 (2020). [PDF] , M. Topsakal†, D. Lu† & S. Yoo†.
2019
- Classification of local chemical environments from x-ray absorption spectra using supervised machine learning. Physical Review Materials 3, 033604 (2019). [PDF] , S. Yoo, M. Topsakal† & D. Lu†.
2014
- Crystal structures of (RS)-N-[(1R,2S)-2-benzyloxy-1-(2,6-dimethylphenyl)propyl]-2-methylpropane-2-sulfinamide and (RS)-N-[(1S,2R)-2-benzyloxy-1-(2,4,6-trimethylphenyl)propyl]-2-methylpropane-2-sulfinamide: two related protected 1,2-amino alcohols. Acta Crystallographica E70, 365-369 (2014). , G. A. Centola, A. Haas, K. P. McClelland, M. D. Moskowitz, A. M. Verderame, M. S. Olezeski, L. J. Papa, S. C. M. Dorn, W. W. Brennessel & D. J. Weix†.