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Competition between energy- and entropy-driven activation in glasses
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In simplified models of glasses we clarify the existence of two different kinds of coexisting activated dynamics,
with one of the two dominating over the other. One is the energy barrier hopping that is typically used to
understand activation, and the other, which we call entropic activation, is driven by the scarcity of convenient
directions in phase space. When entropic activation dominates, the height of the energy barriers is no longer the
primary factor governing the system’s slowdown. In our analysis, dominance of one mechanism over the other
depends on temperature and the shape of the density of states. We also find that at low temperatures a phase
transition between the two kinds of activation can occur. Our observations are used to provide a scenario that can
harmonize the facilitation and thermodynamic pictures of the slowdown of glasses into a single description.
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I. INTRODUCTION

Glasses are inherently slow systems. Their slowness can
be captured by mean-field (MF) theory, which recently mo-
tivated a series of breakthroughs that allowed for a deeper
understanding their sluggish behavior [1–3]. However, MF
theory predicts divergences of the relaxation time that do not
occur in real systems, because it does not capture relaxation
mechanisms that appear in low dimensions. These are gener-
ically called activation, and they are most often pictured as
the hopping of energy barriers [4,5]: Since in MF the barriers
diverge with the system size N , a simple argument is that
activation in MF cannot occur because barriers cannot be
hopped [6].

However, activation can be studied in MF models by
restricting to finite-N and long times [7,8]. Several works
focused on comparing the dynamics of simple MF models,
such as the random-energy model (REM) [9], to the trap
model (TM) [10–12], to establish whether the barrier hopping
dynamics can be assimilated to jumping between traps with
a fixed threshold energy [13–21]. Other works studied the
saddles connecting minima [22–25], extensions of the Franz-
Parisi potential [26], or path-integral approaches to study the
dynamics between different minima [27].

Comparisons with the TM were also performed in models
with a trivial landscape, such as the step [28] or funnel models
[29], where it was shown that entropic effects can lead to
traplike activation, if instead of considering basins in phase
space we construct them dynamically. Indications of entropic
effects in long-time dynamics was also found in less idealized
systems, such as the p-spin model [30,31], finite-connectivity
step models [32], or even three-dimensional (3D) Lennard-
Jones mixtures between the dynamical temperature Td and the
onset temperature To [33] and experimental metallic glasses
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[34]. In these works, however, the underlying framework is
either that activation only exists as barrier hopping [4,11];
either that it is an entropic effect that can be assimilated to
barrier hopping [28,29]; or it is a transient behavior which
eventually turns into hopping [7,32,35]. This is hard to recon-
cile with other pictures of the dynamical arrest of glasses, such
as facilitation [36,37], that argue that the landscape (energy
barriers) is not crucial to explain the slowness of glasses,
which should instead be attributed to kinetic constraints.

Here we clarify the nature of these entropic effects, show-
ing how under the right lens they can be used to unify the
landscape with the facilitation pictures. We take a paradig-
matic model of glasses, the REM [9], and show that both
energy- and entropy-driven activation mechanisms coexist.
When energy-driven activation dominates, the system’s slow-
ness is driven by the energy barrier separating basins, while
when entropic activation dominates, the height of the barrier
becomes unimportant, and the slowness is instead driven by
the scarcity of convenient directions. In our analysis, the dom-
inance of one mechanism or the other depends on the density
of states ρ(E ), and on the temperature kBT ≡ β−1, which is
the control parameter of a nonequilibrium phase transition
between the two different activated regimes (we set kB = 1
in this work).

II. MODELS

In the REM, we have a system with N spins, si = ±1. The
dynamics takes place by flipping a single spin at a time: From
any configuration one can reach N neighboring states. The
energy of a configuration is independent of the configuration
itself, and is drawn from a probability distribution ρ(E ). Two
choices of ρ(E ) are used in literature. The initial formulation
of the REM used a Gaussian energy distribution [9],

ρg(E ) = 1√
2πN

e− E2

2N , (1)
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while more recent efforts also considered the exponential
REM (EREM) [20], which has

ρe(E ) = βceβcE�(−E ), (2)

where we set βc = 1. These models have a transition from a
paramagnetic to a glassy phase at βg = √

2 ln 2 and βe = βc,
respectively.

III. CHARACTERISTIC ENERGIES

A. Threshold energy

In both models, we can define a threshold energy, Eth,
analogous to that of the p-spin model [38], above which no
barriers are typically found. We calculate it as the energy for
which the probability that a neighboring configuration has a
lower energy is 1/N [20,39],

1

N
=

∫ Eth

−∞
ρ(E )dE . (3)

From Eq. (3) one obtains that, to leading order, the threshold
energies of REM and EREM are

Eg
th = −

√
2N ln N, (4)

Ee
th = − 1

βc
ln N. (5)

This definition ensures that there are asymptotically no barri-
ers above Eth, and descends from the mutual independence of
neighboring configurations in the (E)REM.

After long times, the system typically finds itself in a
configuration with an extensively deep energy [20,39], which
we call trap (or basin). To transition from one trap or basin to
another, the system needs to climb to the threshold. Energetic
activated dynamics is mainly driven by the jumps on these
energy barriers, in a manner that is analogous to what happens
in the trap model, in which the time spent in a trap of energy
E follows and Arrhenius law, τ ∼ exp[β(Eth − E )]. This was
indeed found to be the case, by looking at the limiting values
of the aging functions and comparing them with the predic-
tions of the TM [18,20].

B. Attractor energy

We can also define another characteristic energy, which
stems from toy models which represent a purely entropic kind
of activation [28,29,40]. This quantity was called threshold
energy in Refs. [28,29]. As we will show, it is quantitatively
and qualitatively different from the threshold energy, so we
henceforth refer to it as the attractor energy, Ea. This quantity
was first defined in Ref. [41], as the energy such that the
energy of the next step is, on average, neither higher nor lower.
However, we find it more intuitive to work with the definition
given in Ref. [28], according to which Ea is the energy at
which the probability P↑(E ) of increasing the energy at the
next step is equal to the probability P↓(E ) of decreasing it:

P↑(Ea) ≡ P↓(Ea). (6)

P↑(E ) [or P↓(E )] is calculated by considering the probabil-
ity of finding neighbors with a higher (or lower) energy E ′,
and the transition rate w(E → E ′) telling whether a move

toward such an energy is accepted. We consider Monte Carlo
Metropolis dynamics, w(E → E ′) = min(1, exp[−β(E ′ −
E )]). As for the distribution of neighboring energies, it is
particularly easy to calculate in the (E)REM, because the
energy distribution of the neighbors is the same as that of the
whole system. Therefore, one has

P↓(E ) =
∫ E

−∞
dE ′ρ(E ′)w(E → E ′) =

∫ E

−∞
dE ′ρ(E ′), (7)

P↑(E , β ) =
∫ ∞

E
dE ′ρ(E ′)w(E → E ′)

=
∫ ∞

E
dE ′ρ(E ′)e−β(E ′−E ), (8)

where we made it explicit that P↑ depends on β. We note that,
since the configurations in the (E)REM are independent and
identically distributed, P↓(E ) is the cumulative distribution of
ρ(E ), so we can write P↓(Eth ) = 1

N .
Since P↑(E , β ) varies with β while P↓(E ) does not, also Ea

must vary with temperature. For the Gaussian REM, we find
that the attractor energy is

Eg
a = −Nβ

2
, (9)

whereas for the EREM it is

Ee
a =

{
1

β−βc
ln

( 2βc−β

βc

)
; if 0 < β < 2βc,

−∞; if β > 2βc.
(10)

The attractor energy for the EREM is the same that is found in
Ref. [28] in a model which corresponds to a global dynamics
in the EREM.1 This is due to the fact that in the EREM the
distribution of neighboring energies (local) is equal to ρe(E )
(global).

Note that Ea is not directly related to the equilibrium en-
ergy 〈E〉. For example, in the EREM, there is no equilibrium
energy from β � βc (the equilibrium energy diverges to −∞
at β = βc),2 but Ee

a still is finite for βc � β < 2βc. We depict
this in Fig. 1. In other words, the system still is attracted
toward finite energies even though the equilibrium energy is
divergingly negative. In fact, it is straightforward to check that
when E < Ea (or E > Ea) the next configuration during the
dynamics is more likely to have a higher (or lower) energy.
Intuitively, what happens is that even when neighbors with
lower energy exist, they are to hard to find, and the system will
find it more convenient to just increase the energy. However,
the system will immediately abandon high-energy configura-
tions, while it will stay a very long time in the low-energy
ones.

1By global dynamics we mean that any number of spins is flipped at
each time step, in contrast with the single-flip dynamics considered
in this paper. With global dynamics local minima disappear.

2In the EREM we have 〈E〉 =
∫ 0
−∞ e(βc−β )EdE∫ 0
−∞ e(βc−β )dE

= − βc
βc−β

.

024603-2



COMPETITION BETWEEN ENERGY- AND … PHYSICAL REVIEW E 106, 024603 (2022)

FIG. 1. Left: Phase diagram of the EREM, with the associated
characteristic energies and dynamical regimes. For β < βc we have
the equilibrium phase. The solid line is the equilibrium energy
〈E〉. At β = 2βc we have the transition from the entropically to
the energetically activated regime. The dashed line is the attractor
energy. The horizontal dashed-dotted line represents Eth (N = 10).
Eth exists ∀β but is only relevant for β > 2βc. Right: Two diagrams
showing how activated dynamics qualitatively takes place in each of
the regimes.

IV. ENERGY- AND ENTROPY-DRIVEN ACTIVATION

A. Energy driven

We call energy driven the typical thermally activated dy-
namics consisting of hopping barriers with an Arrhenius rate.
Since in the (E)REM the overwhelming majority of the barri-
ers are at E = Eth (see e.g., Ref. [21]), this kind of activation
resembles the dynamics of the trap model [10,11,18,20].

B. Entropy driven

Contrary to Eth, Ea can also exist in systems with a single
energy basin, such as the step [28] or the funnel model [29]. In
these systems, despite the absence of energy-driven activation,
the dynamics is a renewal process, provided that one identifies
the traps dynamically, as all the configurations visited while
E < Ea [28]. With this construction, the relationship between
aging functions and trapping time distributions is the one
predicted by the TM [28], and the typical timescales grow
exponentially in N [29]. In other words, Ea identifies an acti-
vated dynamics which is not driven by the height of the energy
barriers (as there are none), but which shares many signatures
of energy-driven activation. This kind of activated dynamics
is instead driven by the scarcity of convenient directions, and
was therefore called entropy driven [28].

C. Interplay between the two mechanisms

In the (E)REM, we can study the interplay between these
two mechanisms. Since Eth is the minimal height at which the
system must go in order to leave a trap, the entropic mech-
anism is not expected to play a role when Ea < Eth. We see
that, for sufficiently large sizes, in the REM Eg

a (β ) < Eg
th ∀β.

Therefore, we expect that activation in the REM is purely
energy driven.

In contrast, in the EREM we have different behaviors de-
pending on β. When β > 2βc, we have Ea < Eth, so the slow
dynamics should be energy driven. When instead βc < β <

2βc (excluding a range of β close to 2βc which shrinks with in-
creasing N), we have Ea > Eth. This indicates that even when

the system manages escaping a trap, reaching Eth, it will likely
keep going up in energy, attracted toward Ea. Thus, the height
of the barrier, (Eth − E ), is not that important. The reason for
this is that even though in this regime there are directions in
phase space which would decrease the energy, they are too
rare, and the system would rather keep increasing its energy
than “invest time” looking for a descending direction. In Fig. 1
we show a diagram of how activation takes place in each of the
two out-of-equilibrium phases.

Since activated dynamics is relevant in the limit of large
but finite N , we can work out the transition inverse temper-
atures β∗ by setting Ea(β∗, N ) = Eth(N ). This gives us the
N-dependent transitions

βg
∗ = 2

√
2 ln N

N
N→∞−→ 0, (11)

βe
∗ = βc

2 ln N + W
(− ln N

N

)
ln N

N→∞−→ 2βc, (12)

where W (z) is the Lambert function. In the Gaussian REM
the entropic phase disappears for increasing N . In the EREM,
instead, the transition stays at a finite temperature, and we
have entropy-driven activation at low β and energy-driven
activation at high β.

V. RIDGE ENERGY AND PHASE TRANSITION

We run Monte Carlo simulations (details in Appendix A)
to verify this transition from an energy-driven phase at high β,
to an entropy-driven phase at lower β. Since REM and EREM
do not allow for exact simulations at large system sizes, for
sizes N � 30 we rely on modified dynamics, where every time
that a new configuration is visited, all its neighbors’ energies,
except that of the last-visited configuration, are drawn anew.
We call this memory-1 dynamics, and elaborate more on it in
Appendix B.

Our intent is now to relate this transition to physical ob-
servables. We measure the ridge energy, Eridge, defined as
the highest-reached energy during each basin transition, i.e.,
in each of the time intervals during which E (t ) > Eth. With
energy-driven activation, we expect that Eridge(β; N ) will stay
close to Eth(N ), while for entropy-driven activation it will
overshoot to higher values. In Fig. 2 we plot the median Eridge

as a function of β, for EREM and REM. While in the REM
the ridge energies decrease steadily ∀β, in the EREM we see
two distinct entropy-driven (low β) and energy-driven (high
β) phases.

As we show in Fig. 3, the ridge energy scales with N in
the way we expect. In the EREM at low β we are in the
entropic phase, and Eridge ∼ −1 ∼ Ea. In the energy-driven
phase, instead, Eridge ∼ − ln(N ) ∼ Eth. In the REM, where we
only have energy-driven activation, the ridge energy follows
Eth at every β.

Through the lens of the median Eridge, the transition ap-
pears at β slightly smaller than 2, which we understand
through two observations. First, βe

∗ [Eq. (12)] indicates when
P↑ > P↓. However, in order to reach Ea from Eth, the system
needs to go through a large number of steps (i.e., growing with
N) with ascending energy. If P↑ is only slightly larger than P↓
(which is what happens at β slightly lower than 2), then this is
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FIG. 2. Median Eridge(β; N ) in the EREM (a) and REM (b). Dif-
ferent lines stand for different system sizes. Here and in Fig. 3, results
from memory-1 dynamics are shown in solid lines, and results from
full-memory dynamics (N < 30) are shown as markers.

not enough to accept a sufficiently large number of steps to go
all the way up to energies of order 1. Second, this transition
from energy- to entropy-driven activation has features of a
first-order phase transition. We see this from Fig. 4, where we
plot the distribution P( Eridge

|Eth| ) at three different temperatures.
At low β it is peaked around 0, while at high β it is peaked
around −1, as expected. Around the transition, instead, we
see the characteristic two-peak structure of first-order phase
transitions.

VI. CONCLUSIONS

A. Summary

We showed that the “threshold energy” calculated dynam-
ically in models with a trivial landscape [28,29] does not
correspond to the typical landscape-based definition of thresh-
old energy, and decided to rename it as attractor energy.
Threshold and attractor energies define two different kinds
of activated dynamics, entropy- and energy-driven, which
can coexist, though typically one dominates over the other.
Energy-driven activation corresponds to the typical picture of
Arrhenius-like basin hopping, whereas entropy-driven activa-

FIG. 3. Median Eridge as a function of N in the EREM and REM
(inset). Different lines correspond to different values of β. The black
dashed line represents Eth (N ) for each model, according to Eqs. (4)
and (5).

FIG. 4. The density of ridge energies in the EREM model, using
memory-1 dynamics, for N = 10 000.

tion is not driven by barrier heights, but rather by the scarcity
of convenient directions. While at sufficiently low temper-
atures energetic activation always exists in landscapes with
multiple minima, the existence of a higher-T phase where
entropy-driven activation dominates depends on the shape of
ρ(E ). In this entropic activation phase, the attractor energy Ea,
toward which the system is regularly driven, is higher than the
threshold energy Eth, the height of the barriers loses relevance
and we have a breakdown of the Arrhenius behavior.

B. Reconsidering the importance of saddles

One consequence is that the study of the transition paths of
glasses by searching the lowest saddles, a technically daunting
task [22–25], is potentially not informative for the dynamics
at temperatures around the glass transition. Calculating the at-
tractor energy, with its comparison to the threshold, is simpler
and has the potential of unlocking the true activated nature of
the dynamics.

C. Rationalizing observations in other systems

Additionally, entropic activation can elegantly explain an
apparently puzzling result recently found by T. Rizzo [27],
who calculated, in the spherical p-spin model, the path from
one equilibrium low-temperature configuration to another. He
found that the maximum energy reached during this transition
is considerably higher than Eth even though the largest barriers
should not exceed Eth. We see that the same phenomenon
occurs in the EREM, in a similar setting (we followed the
system from one trap at E < Eth to another one), where we
showed that the system is pushed toward a higher energy Ea

by the scarcity of paths with energy close to Eth. We can
thus attribute this behavior to the same entropic effects, and
conjecture that at lower temperatures the paths will be close
to Eth (as per the transition that we found in the EREM).

This is also consistent with recent numerical observations
by Stariolo and Cugliandolo in the discrete p-spin model, that
the trapping time distributions seem to follow the step model
predictions better than those of the trap model [30,31]. In par-
ticular, they define the traps dynamically by taking, instead of
the position of the saddle, the highest point reached during the
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dynamics. Therefore, they are calculating the traps through
the attractor instead of the threshold energy, which explains
the observed steplike behavior. Furthermore, they find that the
energy of the ridge is larger than Eth, which is an indication
that the lowest-energy path is not used, just as we find here.

Also in 3D systems, such a Lennard-Jones mixtures, al-
though activated dynamics takes place between To and Td

[4,5,42], it was recently shown that it is not dominantly of
an energy-driven kind, since, for example, the system is mov-
ing at energies significantly higher than the ridges separating
metabasins [33]: The height of the barriers separating basins
does not play a crucial role in this regime.

D. The nature of activation in different kinds of models

A typical intuition of why MF results do not apply in
low dimensions is that the energy barriers diverge with the
system size. However, in systems like hard spheres there are
no energy barriers, so it seems like beyond-MF effects are
not attributed to the right mechanism. It was suggested in
several occasions that the low-dimensional correspondent of
a MF model can be nontrivial [43–45]. Our analysis suggests
that we should often think of activation less as the hopping of
energy barriers and more as a search for convenient directions,
which require a collective cooperative behavior that is hard
to obtain by randomly moving particles. We should therefore
regard activation as a process beyond MF, not because the
barriers are diverging but rather because it involves processes
(energetic and entropic) which take place on timescales t �
N (usually t ∼ eN ).

E. Connection to facilitation theory

The dynamical facilitation picture shows that a strong
glasslike slowdown can appear in a trivial landscape (without
barriers), with the dynamics being slowed down by dynamical
constraints [36,46]. These dynamical constraints are localized
in space, so we do not aim at a 1:1 correspondence with a
mean-field model [as the (E)REM], but we do note that the en-
tropic barriers that lead to the entropic phase in the EREM are
(soft) kinetic constraints. In fact, they mark directions in phase
space along which motion is suppressed (with high probability
a spin cannot be flipped), and they also appear in the absence
of potential energy barriers [28,29,41,47,48]. As an extra, here
kinetic constraints are not the only slow dynamics mechanism,
but they act concurrently with energetic activation; in addition
to the fast mechanism of diffusion toward lower energies. In
other words, the phenomenological ingredients of facilitation
are present, together with additional mechanisms that should
appear in the description of a glass.

Since the dynamical constraints, as well as activation, ap-
pear at To [4,36], we suppose a correspondence with the ther-
modynamic transition in the EREM (at β = βc). Cooling fur-
ther, one observes entropy-driven activated dynamics between
To and Td [33], and at Td the dynamics is deemed to become
energy-driven [49]. Also in the EREM, entropic activation
stays dominant until the transition to the energetic phase at
β = 2βc, suggesting a correspondence between Td and the
entropic-energetic transition we observed in the EREM. How-
ever, in order to confirm these speculations we need to be able
to observe entropic activation in more complex models.

F. Verifying entropic activation in more complex models

In simple models such as the EREM or the Funnel model,
the entropic phase is present both for local and global phase
space dynamics [29]. However, this is not necessarily true for
more complex models such as the p spin. A starting point
which would allow to study correlated energy levels with-
out changing the overall ρ(E ) would be the correlated REM
[21] and the number partitioning problem (NPP) [50]. These
two models have different kinds of correlations since, in the
first, the basins are smooth, while in the NPP the traps are
anticorrelated with their neighbors. In particular, in the NPP
it was observed that, at β = 2βc, there is a transition within
the glass phase, associated with a violation of the fluctuation-
dissipation theorem, with relevant differences between local
and global dynamics. The relationships between our findings
and those of Ref. [50] could be studied analytically within the
framework of Ref. [51], which studies the step model in the
limit of slowly decorrelating variables.
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APPENDIX A: NUMERICAL DETAILS

1. Monte Carlo Simulations

Our simulations are performed with the Metropolis Monte
Carlo algorithm [52]. Depending on the value of β, we use
two equivalent implementations, which we call “standard”
and “Gillespie.” The standard dynamics is a textbook Monte
Carlo simulation with Metropolis acceptance criteria (see,
e.g., Ref. [53] for a detailed description). The run time of
the standard procedure is tightly bound, with tmax time steps.
However, at large β, the rejection rate of standard dynamics
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FIG. 5. Energy as a function of time, in simulations with Gille-
spie (red) and regular Monte Carlo (blue) dynamics. Each row is
a different inverse temperature. On the first column we have the
full memory dynamics, while on the second we have the memory-1
dynamics (Appendix B).

is high and it may take many steps for a new configuration to
be accepted. We therefore use the Gillespie procedure (which
is formally equivalent) is much more efficient. The Gillespie
algorithm is a rejectionless method that computes the time
that the system spends in a given configuration and transitions
without rejection to one of the neighbors according to how
probable it is to transition to each neighbor. For a more de-
tailed and didactic explanation of the Gillespie algorithm we
refer the reader to Ref. [54]. While the Gillespie method this is
efficient at large β, it is extremely inefficient at small β. Thus,
we set a cutoff of β/βc = 2.3, such that when β/βc < 2.3,

dynamics are run using the standard procedure, and Gillespie
otherwise. We also use tmax = 107 for all calculations.

Note that the standard and Gillespie procedures are for-
mally equivalent [54]. To demonstrate this empirically, we

show the mean energy E (t ) for various choices of N and β

(with βc = 1) in the EREM, in Fig. 5.

2. Inherent structures

To ensure that we only measure transitions between dif-
ferent traps, with memory dynamics we measure the inherent
structure (IS) before and after the transition, and keep the tran-
sition only if they are different. To measure the IS we take the
steepest descent path toward the nearest minimum. Since the
system is discrete, we define steepest descent as a trajectory
which at each step goes to its lowest-energy neighbor, until a
minimum is reached.

3. Threshold energy

As already pointed out in Ref. [20], the subleading correc-
tions in the threshold energy of the REM are large (around
13% in the largest sizes). Therefore, in our REM simula-
tions we calculated the threshold energy numerically. For the
EREM simulations, we used Eq. (4).

APPENDIX B: MEMORY AND MEMORY-1 DYNAMICS

In REM and EREM, the energy of each configuration is a
fixed random variable. This means that, for N spins, there are
2N energies sampled from ρ(E ), each of which is permanently
paired to some configuration. Therefore, in order to perform a
long simulation in these models, we need to store the energy
of all the 2N states, to ensure that if a configuration is visited
twice its energy has not changed. Storing 2N double precision
floating point numbers is expensive in terms of memory, and
limits the largest system sizes that we can simulate. This is
why, in order to simulate N � 30, instead of storing the all the
2N energies, we only stored the last visited one, and sampled
anew the remaining N − 1 neighbors. We call this dynamics
memory-1, in contrast with the memory dynamics which stores
all the energies throughout the whole simulation.

FIG. 6. Energy as a function of time for memory and memory-1 dynamics. The dashed curve is the slope −T ln(t ) that one would expect
in the infinite-size limit.
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This simplification neglects loops in the dynamics, which
for large N are arguably rare, and does not allow the system to
directly return to configurations visited more than one step
earlier. The latter can be seen as an advantage, since we
want to wash back and forth motion out of the dynamics we
are measuring [4,20]. Since the REM and EREM dynamics
is a renewal process [20], we can expect that anyhow af-
ter some time the previously visited phase space should be
forgotten.

An additional difference between memory and memory-1
dynamics is that the latter does not suffer from finite-size

effects descending from the phase space being of limited
size: With memory dynamics there exists a lowest-reachable
energy, while with memory-1 it is always possible to reach
a lower energy. In other words, memory-1 dynamics suffer
less from finite-size effects than the exact dynamics, and in
any case this kind of effects does not affect the calculation
of Eridge. In Fig. 6 we show the comparison between the
two dynamics for varying β and N . At all temperatures, the
difference between the two dynamics decreases as N grows.
Both dynamics present finite-size effects, which decrease as
the system becomes larger.
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