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Bond-Peierls polaron: Moderate mass enhancement and current-carrying ground state
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We study polarons in the one-dimensional Bond-Peierls electron-phonon model in which phonons on bonds
of a lattice modulate the hopping of electrons between lattice sites and contrast the results to those known for
the breathing-mode Peierls problem. By inspecting the atomic limit, we show that polaronic dressing and mass
enhancement of Bond-Peierls polarons depend on the momentum dependence of the phonons. For dispersionless
phonons, Bond-Peierls polarons are perfectly localized in the atomic limit, unlike their breathing-mode counter-
parts because the carrier creates a string of phonon excitations that can only be annihilated via processes that
retrace the carrier to its original site. However, inclusion of phonon dispersion leads to a nondivergent polaron
mass even in the atomic limit and depending on the form of the phonon dispersion may lead to a transition to a
non-zero-momentum ground state akin to that found in the breathing-mode Peierls model.

DOI: 10.1103/PhysRevB.104.L140307

Introduction. It has been appreciated for well over 50 years
that the lattice distortions of a solid can strongly modulate
electronic dynamics, inducing fluctuations in both the elec-
tron’s potential and the kinetic energy. Much of our generic
understanding of this phenomenon has relied on simple mod-
els, such as the Holstein [1,2] and Fröhlich [3,4] models, that
focus on the changes to the electronic potential energy and
neglect the lattice-induced modulation of hopping integrals.
These models, which we refer to generically as Holstein mod-
els, provide what are now standard “textbook” results for the
behavior of polarons [5]. In recent years, investigations of
models where phonons modulate the electron’s hopping am-
plitude (kinetic energy) [6–9], which we refer to generically as
Peierls models, have revealed much richer physics including a
polaronic transition as a function of the coupling at which the
ground-state momentum becomes nonzero and a dependence
of the mass on coupling strength that changes from a regime
of mass enhancement to one of mass reduction after the tran-
sition where the mass diverges [10]. This example provides
direct evidence of a sharp change in polaronic behavior driven
by the electron-phonon coupling, a phenomenon long debated
in the literature [11].

The different behavior of polarons in Holstein versus
Peierls models presents fundamental questions. In quantum
materials polarons and bipolarons may contribute to the
stabilization of emergent collective phases, such as supercon-
ductivity. In traditional models, such as the Holstein model,
bipolarons become very heavy since phonons mediate a local
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effective attraction between already heavy polarons [12,13].
In contrast, in models in which a breathing lattice distor-
tion modulates the electron’s hopping, phonons induce an
effective pair-hopping interaction that binds polarons without
sacrificing their kinetic energy, forming strongly bound yet
light-mass bipolarons. Such bipolarons can be several orders
of magnitude lighter than their counterparts in the Holstein
model, even in regimes of similar electron, phonon, and inter-
action energy scales [14]. Light bipolarons open the door to a
new pathway to phonon-mediated high-temperature supercon-
ductivity [14,15]. This calls for deeper investigation of general
and model-specific behavior of polaronic mass enhancement
in systems in which the lattice couples to the electron’s kinetic
energy.

Two generic classes of Peierls models exist: The more
widely studied breathing-mode Peierls model in which the
hopping across a bond (link) is modulated by the difference
in phonon amplitudes at opposite ends of the bond X̂i − X̂ j

and the Bond-Peierls model in which phonons that reside
on the bonds, X̂i, j (i, j labels the bond between sites i and
j), modulate the electron hopping [16]. In this Letter, we
focus on the less-studied Bond Peierls model, contrasting our
findings with known results [10] (which we reproduce) for the
breathing-mode Peierls model.

Using the recently introduced numerically exact general-
ized Green’s function cluster expansion (GGCE) approach
[17], we compute exact one-particle Green’s functions of
polarons in the Bond-Peierls model at T = 0. Our main ob-
servations and conclusions are as follows:

(1) For dispersionless phonons the effective mass of the
Bond-Peierls polaron increases monotonically with the cou-
pling strength. This behavior differs dramatically from that of
breathing-mode Peierls polarons, which exhibit a transition as
a function of the coupling strength at a critical coupling λc
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from a weak-coupling regime where the ground state has zero
momentum to a strong-coupling regime at which the ground
state has a nonzero momentum; the transition also separates
a regime of mass enhancement as the coupling is increased
from a regime of mass reduction.

(2) The polaronic dressing in the Bond-Peierls model
depends strongly on the phonon dispersion. For strictly disper-
sionless phonons, there is perfect localization of the polaron
in the atomic limit. Viewed complementarily, this corresponds
to a geometric process (absent in the breathing-mode Peierls
and Holstein models) in which the carrier creates phonon
configurations in such a way that it must retrace its path back
to the original site in order to fully annihilate the phonons.

(3) Inclusion of phonon dispersion in the Bond-Peierls
model restores a nonvanishing carrier velocity even in the
zero-hopping limit and allows for the possibility of a transition
to a state with nonzero ground-state momentum.

We argue that these results do not depend strongly on
spatial dimensionality. Thus, we expect that strong-coupling
properties of polarons and bipolarons of Peierls models found
in one dimension (1D) will qualitatively carry over to higher
dimensions.

Model and methods. We consider the Bond-Peierls model
in 1D, defined as

Ĥ = −t
∑

i

(ĉ†
i ĉi+1 + H.c.) + 1

N

∑
i j

�i− j b̂
†
i+1/2b̂ j+1/2

+α
∑

i

(ĉ†
i ĉi+1 + H.c.)(b̂†

i+1/2 + b̂i+1/2). (1)

Here, t is the hopping amplitude for a carrier (spin is irrelevant
here as we consider only one particle) that lives on the sites i
of the lattice (with lattice constant a = 1) and is described by
fermion creation (annihilation) operators ĉ† (ĉ), �i− j (h̄ =
1) gives the dispersion of optical phonons located on the
bonds of the lattice (i + 1/2) and described by boson oper-
ators b̂† and b̂, and α represents the electron-phonon coupling
constant into which we have absorbed some constant param-
eters (e.g., the oscillator mass, etc.). In our numerical studies
we specialize to the Einstein limit �i− j = �δi j . To character-
ize the effects of the interaction, we define two dimensionless
parameters: λ = α2/�t , the dimensionless coupling charac-
terizes the strength of the interaction [λ is the ratio of the
ground state (GS) energy in the atomic limit to that in the free
electron limit)] and γ = �/W (where W is the free-electron
bandwidth W = 4t in 1D), the adiabaticity parameter, speci-
fies the degree of competition between distinct energy scales.

We use the GGCE approach [17] to compute the carrier
Green’s function G(k, ω) = 〈0|ĉkĜ(ω)ĉ†

k |0〉, where Ĝ(ω) =
[ω − Ĥ + iη]−1 is the propagator with artificial broadening
η. The GGCE is a numerically exact systematic expansion of
the equation of motion of the propagator in the spatial extent
of phonon clusters of size M sites and total phonon number
N . A value of Mmax = 4 and Nmax = 14 allows us to converge
all ground-state results presented here to the exact limit.

Results. A polaron forms when a discrete peak in the
spectral function appears below the free-electron energy −2t
(in 1D). We find that a polaron forms for any λ > 0, see
Figs. 1 and 2. We track in Figs. 1(a) and 1(b) the polaron
dispersion EP(k) as a function of λ for two adiabaticity

FIG. 1. Polaron dispersion EP(k) − EP(0), (a) and (b), and
quasiparticle weight ZP(k), (c) and (d), in the Bond-Peierls
model with dispersionless phonons as a function of λ ∈
{0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8} (from top to bottom) for two different
adiabaticity parameters γ = 1/16 and 3/4. The free-particle (λ = 0)
dispersion is shown as a dashed black line. The nonmonotonic evo-
lution of Zp(k) with λ and k in (d) can be understood in terms of
an avoided crossing of the polaron band with a one-phonon state at
energy � relative to the band minimum (k = 0), which occurs for
small λ. Here, what is plotted is Z for the lowest state at a given k.
For small λ and at k beyond the crossing point, this branch is almost
entirely of phonon character. As λ increases the avoided crossing
wave vector moves to the edge of the zone, and for λ � 0.5 this
physics becomes irrelevant.

parameters γ = 1/8, 3/4, interpolating between the deep and
intermediate adiabatic regimes. For very small couplings, the
polaron band exhibits continuity from the free-electron band
and a cosinelike form. As the coupling strength increases, the
bandwidth drops, driven by shifts at higher k to lower ener-
gies and a flattening of the band minimum near k = 0. This
behavior, reminiscent of typical polaronic dressing, grows
monotonically with larger coupling strength and in stronger
adiabaticity regimes. This picture is corroborated in Figs. 1(c)
and 1(d) showing an increasingly small quasiparticle weight
ZP(k) = |〈GSP|c†

k |0〉|2 (|GSP〉 is the GS polaron wave func-
tion, and |0〉 is the zero-carrier zero-phonon vacuum state)
with increasing couplings and for large k. The behavior at
large k results from the proximity of the polaron at this k to
the polaron + one-phonon continuum EGS + � also seen in
other models [10,12].

Figure 2 contrasts the evolution of polaron properties with
λ in the Bond-Peierls model with its breathing-mode Peierls
counterpart in which the electron-phonon coupling is replaced
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FIG. 2. GS properties and polaron effective mass m∗
P in the Bond

Peierls (BP) model with dispersionless phonons versus that in the
breathing-mode Peierls (BMP) model as a function of λ for γ =
1/16 and 3/4. m0 = 1/2t is the free-electron mass. λ = α2/�t for
the Bond-Peierls model, and λ = 2α2/�t for the breathing-mode
Peierls model.

by

V̂ BMP
e-ph = α

∑
i

(ĉ†
i ĉi+1 + H.c.)(b̂†

i + b̂i − b̂†
i+1 − b̂i+1), (2)

and phonons on the sites instead of the bonds. The breathing-
mode Peierls polaron exhibits a sharp transition as a function
of λ from one with a single minimum at k = 0 for λ <

λc to one with two degenerate minima at ±k �= 0 at λ >

λc [10]. This transition does not occur in the Bond-Peierls
model with dispersionless phonons. The sharp transition of
the breathing-mode Peierls polarons manifests as a sharp di-
vergence in m∗

P = [∂2EP(k)/∂k2|k=kGS ]−1 at λc before which
the mass grows with λ and after which the mass decreases
with λ. In contrast, we see no evidence of a transition or the
associated divergence in m∗

P(λ) of the Bond-Peierls polarons
with dispersionless phonons. Instead, we find the typical be-
havior in which the polaron mass increases with increasing λ,
however, with a dependence clearly weaker than exponential,
unlike in the Holstein model. This translates into relatively
lighter masses relative to those in the Holstein model even
for very large (and unrealistic) couplings, such as λ = 3 in
the adiabatic limit � = 0.5t where the Bond-Peierls polaron
mass ∼10m0 remains several orders of magnitude lighter than
the Holstein polaron mass ∼6 × 104m0 [18].

The mechanism behind polaron formation and mass en-
hancement in the Bond-Peierls and breathing-mode Peierls
models becomes transparent in the atomic limit t = 0. Up to a
constant shift in energy, the Hamiltonian of a generic linearly
coupled electron-phonon system in the atomic limit reads

Ĥ = 1

2

∑
i

P̂2
i + 1

2

∑
i, j

X̂iDi, j X̂ j +
∑

i

X̂iÔ
e
i . (3)

Here, we have recast the Hamiltonian in the basis of
first-quantized oscillator operators (oscillator mass M =

1), P̂i = i
√

�
2 (b̂†

i −b̂i ) and X̂i =
√

1
2�

(b̂†
i +b̂i ), and Di, j = D0δi, j +

D1(δ j,i+1 + δ j,i−1) is the Hessian matrix with D0 = �2, a
local harmonic term and Di �= j provides phonon dispersion,
and Ôe

i is an electronic operator that couples linearly to the
oscillator with strength α̃ = α

√
2�. In any Hamiltonian of

the form of Eq. (3) the electron and phonon coordinates can
be decoupled via a transformation in which the oscillator
coordinate is displaced X̂i → ˆ̃Xi = X̂i + ∑

j D−1
i, j Ôe

j to yield

Ĥ = 1

2

∑
i

P̂2
i + 1

2

∑
i, j

ˆ̃XiDi, j
ˆ̃Xj − 1

2

∑
i

Ôe
i D−1

i, j Ôe
j . (4)

In the Bond-Peierls model Ôe
i = α̃ÔBP

i = α̃(ĉ†
i+1/2ĉi−1/2 +

ĉ†
i−1/2ĉi+1/2) and a simple calculation shows that in the ab-

sence of phonon dispersion (Di, j = D0δi j), the electronic
ground state is strictly localized in the atomic limit. Disper-
sion arises from D−1

i,i±1, which gives rise to a second-neighbor
hopping of the carrier, and depending on the sign of D−1

i,i±1 this
dispersion has a minimum at k = 0 or k = ±π/2. By continu-
ity, we see that for dispersive phonons we obtain heavy but not
infinite masses for nonzero t at strong couplings. Contrast this
result against that of the t = 0 breathing-mode Peierls polaron
with Ôe

i = α̃ÔBMP
i = α̃(ĉ†

i+1ĉi − ĉ†
i ĉi−1 + H.c.) in Eq. (4).

The different form of the electron operator means that
one finds a second nearest-neighbor hopping of the carrier:
+α2

�

∑
i(ĉ

†
i+2ĉi + H.c.) even in the absence of phonon dis-

persion. This term produces a dispersion even in the atomic
limit. Importantly, in this limit the energy minimum is at
k = π/2 (zone boundary of the Brillouin zone for second-
neighbor hopping). At λ = 0, the energy minimum is at k = 0,
implying that the weak- and strong-coupling regimes must
be separated by nonanalyticity (phase transition) as seen in
Fig. 2. We also verify this picture numerically in the atomic
limit in Fig. 3 where we compute momentum-resolved spec-
tral functions for the models with dispersionless phonons.
In the Bond-Peierls model, a phonon dispersion generates
a second-neighbor hopping but the sign of the generated
hopping amplitude may be either positive or negative, corre-
sponding to a polaron band minimum at k = ±π/2 or k = 0,
respectively, so that the weak- and strong-coupling regimes
may or may not be separated by a transition, depending on the
microscopic details.

The inverse mass of the Bond-Peierls polaron in the model
with dispersionless phonons shown in Fig. 2(f) increases only
slowly with λ, showing that in the regimes we study the de-
pendence of mass on λ is very different from the exponential
increase found in Holstein models. This apparent nonex-
ponential dependence may be rationalized as follows. The
electronic portion of the canonically transformed Hamiltonian
in the t = 0 limit is just − α̃2

D0

∑
i n̂i, so in the transformed

basis, one obtains a degenerate family of ground states cor-
responding to transformed electrons localized on sites i with
binding energy α̃2/D0. Undoing the transformation we see
that in the original basis the ground-state wave function is
exp(i α̃

D0

∑
j P̂j ÔBP

j )|i〉 with |i〉 as the wave function of a car-
rier localized on site i. The transformation factor delocalizes
the electron over a distance that grows with α. This physics
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FIG. 3. Spectral functions for � = 0.5 and broadening factor η = 0.04 of the (a) Bond- and (b) breathing-mode Peierls models with
dispersionless phonons at t = 1 (top row) and t = 0 (bottom row) for a variety of different coupling strengths α.

may be understood as an analog of the string picture familiar
from analyses of the Ising limit of the t − J model [19–22]
as follows. As the electron moves away from its original site,
each hop to a new site requires the creation of a phonon on the
connecting bond. This can only be accomplished via a virtual
process in which the electron ultimately retraces its path to
the original site in order to absorb the bosons, see Fig. 4.
The length of this string depends on the ratio α/�. Thus,
as λ increases the Bond-Peierls polaron becomes increasingly
delocalized over many sites in sharp contrast to, e.g., the Hol-

FIG. 4. Cartoon depicting examples of virtual processes in which
the carrier (blue circle) creates phonon excitations (red squares),
forming a polaron. (a) A carrier in the Bond-Peierls model with dis-
persionless phonons moves from site i → i + 1 → i + 2 → ... and
circles back multiple times (blue arrow) to form a state with 10 total
phonons, terminating at site i + 4. We observe that there is no way
for the carrier to move from site i to some site j �= i whilst also anni-
hilating all phonons on the lattice via V̂ BP

e−ph, explaining the flat bands
in Fig. 3(a) in the t = 0 limit. (b) A second-order phonon-mediated
process in the breathing-mode Peierls model already permits second
nearest-neighbor hopping (note the negative sign, responsible for the
sharp transition [10]). We see that unlike in the Bond-Peierls model,
the breathing-mode Peierls coupling V̂ BMP

e-ph directly mediates carrier
mobility.

stein model in which at t = 0 the electron is strictly localized
to one site. The bare hopping t connects the states (degenerate
at t = 0) in which the electron wave function is centered
around sites i and i ± 1. The large spatial extent of the wave
function in the strong-coupling limit means that the two states
share very similar phonon configurations, explaining why the
overlap between the two states is not exponentially small,
unlike in the Holstein model.

It is important to note that the arguments of the canon-
ical transformation presented above carry over to higher
dimensions and we, thus, expect the qualitative features
of polarons and bipolarons in Bond- and breathing-mode
Peierls systems, including the existence of a sharp polaronic
transition and the behavior of the polaron and bipolaron
masses as a function of λ to qualitatively extend to higher
dimensions.

Conclusions and outlook. In this Letter, we studied the
Bond-Peierls polaron in 1D and contrasted its properties with
the breathing-mode Peierls polaron. The mass of the Bond-
Peierls polaron in 1D increases with increasing coupling
strength and for dispersionless phonons diverges in the infinite
coupling limit. The divergence may be understood as arsing
from a phonon stringlike mechanism, which is destroyed for
any nonzero phonon dispersion. In the strong-coupling limit
of the Bond-Peierls problem the dispersion minimum may be
at k = 0 or k �= 0 depending on the momentum dependence of
the phonons. A minimum at k �= 0 implies a phase transition at
an intermediate value of the coupling. Our investigation poses
interesting questions about whether the transition at nonzero
temperatures, which may have relevance for real materials,
especially in organic materials [23] and certain classes of
perovskites [24]. Our results demonstrate that Peierls polarons
exhibit nonexponential mass enhancement with λ, at least, in
the regimes of parameter space we can accurately simulate as
well as possible transitions in presence of phonon dispersion
characteristic of real systems, although the specific details
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depend on the specific model. This sensitivity to details sug-
gest that some of the assumed phenomenology of Peierls
materials [25–27] may require a careful analysis of universal
versus model specific behavior.

Based on a canonical transformation derived in the atomic
limit, we have argued that the qualitative features of polarons
in Peierls models, including their sharp transition and mass
dependence on the coupling strength, extend to higher di-
mensions. Importantly, the relatively light effective masses
of Bond-Peierls polarons when compared to Holstein po-
larons even for strong couplings opens the possibility that
the model may generate light bipolarons in two dimensions.
The mass of bipolarons generally depends on two important
factors: (1) the single polaron mass, and (2) the nature of
the pairing mechanism. A kinetic-energy-enhancing pairing
mechanism can, in principle, bind relatively heavy polarons
[14,22], forming bipolarons that are not necessarily heav-
ier. However, the breathing-mode Peierls model shows the
most promise for producing a novel route to high-temperature
bipolaronic superconductivity as it should describe light bipo-
larons in two dimensions due to its ability to generate:
(1) light single polarons at strong couplings [10], (2) pair-
hopping interactions, which mediate the formation of light
bipolarons [14].

Note added. During the writing of this Letter, we became
aware of a related study of Ref. [28], which focuses on the
(breathing-mode and Bond-)Peierls polarons in two dimen-
sions. The main qualitative features of our results agree where
they intersect. Specifically, the two works affirm the absence
of exponential mass enhancement of the Bond-Peierls po-
laron in the regimes simulated. Furthermore, their agreement

confirms that the behavior of Peierls polarons exhibit little
dimensional dependence.
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